Bactrocera

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 8085 Experts worldwide ranked by ideXlab platform

Mark K Schutze - One of the best experts on this subject based on the ideXlab platform.

  • Enriched metabolic pathways
    2016
    Co-Authors: Nagalingam Kumaran, Mark K Schutze, Peter J. Prentis, Kalimuthu Palanivel Mangalam, Anthony R. Clarke
    Abstract:

    KEGG Metabolic pathways in Bactrocera tryoni transcriptom

  • Enriched GO terms
    2016
    Co-Authors: Nagalingam Kumaran, Mark K Schutze, Peter J. Prentis, Kalimuthu Palanivel Mangalam, Anthony R. Clarke
    Abstract:

    Enriched GO terms and their classes in Bactrocera tryoni transcriptom

  • Full list of differentially expressed genes Kumaran.xls
    2016
    Co-Authors: Nagalingam Kumaran, Mark K Schutze, Peter J. Prentis, Kalimuthu Palanivel Mangalam, Anthony R. Clarke
    Abstract:

    The data file contains complete list of transcripts that are differentially expressed in Queensland fruit fly, Bactrocera tryoni male flies fed on a phytochemical, zingerone

  • synonymization of key pest species within the Bactrocera dorsalis species complex diptera tephritidae taxonomic changes based on a review of 20 years of integrative morphological molecular cytogenetic behavioural and chemoecological data
    Systematic Entomology, 2015
    Co-Authors: Mark K Schutze, Karen F Armstrong, Norman B Barr, Nidchaya Aketarawong, Weerawan Amornsak, Antonis A Augustinos, Wang Bo
    Abstract:

    Bactrocera papayae Drew & Hancock, Bactrocera philippinensis Drew & Hancock, Bactrocera carambolae Drew & Hancock, and Bactrocera invadens Drew, Tsuruta & White are four horticultural pest tephritid fruit fly species that are highly similar, morphologically and genetically, to the destructive pest, the Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). This similarity has rendered the discovery of reliable diagnostic characters problematic, which, in view of the economic importance of these taxa and the international trade implications, has resulted in ongoing difficulties for many areas of plant protection and food security. Consequently, a major international collaborative and integrated multidisciplinary research effort was initiated in 2009 to build upon existing literature with the specific aim of resolving biological species limits among B. papayae, B. philippinensis, B. carambolae, B. invadens and B. dorsalis to overcome constraints to pest management and international trade. Bactrocera philippinensis has recently been synonymized with B. papayae as a result of this initiative and this review corroborates that finding; however, the other names remain in use. While consistent characters have been found to reliably distinguish B. carambolae from B. dorsalis, B. invadens and B. papayae, no such characters have been found to differentiate the latter three putative species. We conclude that B. carambolae is a valid species and that the remaining taxa, B. dorsalis, B. invadens and B. papayae, represent the same species. Thus, we consider B. dorsalis (Hendel) as the senior synonym of B. papayae Drew and Hancock syn.n. and B. invadens Drew, Tsuruta & White syn.n. A redescription of B. dorsalis is provided. Given the agricultural importance of B. dorsalis, this taxonomic decision will have significant global plant biosecurity implications, affecting pest management, quarantine, international trade, postharvest treatment and basic research. Throughout the paper, we emphasize the value of independent and multidisciplinary tools in delimiting species, particularly in complicated cases involving morphologically cryptic taxa.

  • one and the same integrative taxonomic evidence that Bactrocera invadens diptera tephritidae is the same species as the oriental fruit fly Bactrocera dorsalis
    Systematic Entomology, 2015
    Co-Authors: Anthony R. Clarke, Matthew N Krosch, Mark K Schutze, Khalid Mahmood, Ana Pavasovic, Jaye Newman, Stephen L. Cameron
    Abstract:

    The invasive fruit fly Bactrocera invadens Drew, Tsuruta & White, and the Oriental fruit fly Bactrocera dorsalis (Hendel) are highly destructive horticultural pests of global significance. Bactrocera invadens originates from the Indian subcontinent and has recently invaded all of sub-Saharan Africa, while B. dorsalis principally occurs from the Indian subcontinent towards southern China and South-east Asia. High morphological and genetic similarity has cast doubt over whether B. invadens is a distinct species from B. dorsalis. Addressing this issue within an integrative taxonomic framework, we sampled from across the geographic distribution of both taxa and: (i) analysed morphological variation, including those characters considered diagnostic (scutum colour, length of aedeagus, width of postsutural lateral vittae, wing size, and wing shape); (ii) sequenced four loci (ITS1, ITS2, cox1 and nad4) for phylogenetic inference, and; (iii) generated a cox1 haplotype network to examine population structure. Molecular analyses included the closely related species, Bactrocera kandiensis Drew & Hancock. Scutum colour varies from red-brown to fully black for individuals from Africa and the Indian subcontinent. All individuals east of the Indian subcontinent are black except for a few red-brown individuals from China. The postsutural lateral vittae width of B. invadens is narrower than B. dorsalis from eastern Asia, but the variation is clinal, with subcontinent B. dorsalis populations intermediate in size. Aedeagus length, wing shape and wing size cannot discriminate between the two taxa. Phylogenetic analyses failed to resolve B. invadens from B. dorsalis, but did resolve B. kandiensis. Bactrocera dorsalis and B. invadens shared cox1 haplotypes, yet the haplotype network pattern does not reflect current taxonomy or patterns in thoracic colour. Some individuals of B. dorsalis/B. invadens possessed haplotypes more closely related to B. kandiensis than to conspecifics, suggestive of mitochondrial introgression between these species. The combined evidence fails to support the delimitation of B. dorsalis and B. invadens as separate biological species. Consequently, existing biological data for B. dorsalis may be applied to the invasive population in Africa. Our recommendation, in line with other recent publications, is that B. invadens be synonymized with B. dorsalis.

Anthony R. Clarke - One of the best experts on this subject based on the ideXlab platform.

Roger I. Vargas - One of the best experts on this subject based on the ideXlab platform.

  • weathering and chemical degradation of methyl eugenol and raspberry ketone solid dispensers for detection monitoring and male annihilation of Bactrocera dorsalis and Bactrocera cucurbitae diptera tephritidae in hawaii
    Journal of Economic Entomology, 2015
    Co-Authors: Roger I. Vargas, Bruce E Mackey, Steven K Souder, Eddie Nkomo, Peter Cook, John D Stark
    Abstract:

    ABSTRACT Solid male lure dispensers containing methyl eugenol (ME) and raspberry ketone (RK), or mixtures of the lures (ME + RK), and dimethyl dichloro-vinyl phosphate (DDVP) were evaluated in area-wide pest management bucket or Jackson traps in commercial papaya (Carica papaya L.) orchards where both oriental fruit fly, Bactrocera dorsalis (Hendel), and melon fly, Bactrocera cucurbitae (Coquillett), are pests. Captures of B. dorsalis with fresh wafers in Jackson and bucket traps were significantly higher on the basis of ME concentration (Mallet ME [56%] > Mallet MR [31.2%] > Mallet MC [23.1%]). Captures of B. cucurbitae with fresh wafers in Jackson and bucket traps were not different regardless of concentration of RK (Mallet BR [20.1%] = Mallet MR [18.3%] = Mallet MC [15.9%]). Captures of B. dorsalis with fresh wafers, compared with weathered wafers, were significantly different after week 12; captures of B. cucurbitae were not significantly different after 16 wk. Chemical analyses revealed presence of R...

  • sexual communication and related behaviours in tephritidae current knowledge and potential applications for integrated pest management
    Journal of Pest Science, 2014
    Co-Authors: Giovanni Benelli, Angelo Canale, Russell H. Messing, Kent M Daane, Roger I. Vargas
    Abstract:

    Tephritidae are an enormous threat to fruit and vegetable production throughout the world, causing both quantitative and qualitative losses. Investigating mating sequences could help to unravel mate choice dynamics, adding useful information to improve behaviour-based control strategies. We review current knowledge about sexual communication and related behaviours in Tephritidae, with a focus on six key agricultural pests: Anastrepha ludens, Bactrocera cucurbitae, Bactrocera dorsalis, Bactrocera oleae, Ceratitis capitata and Rhagoletis pomonella. We examine features and the role of male–male combat in lekking sites, cues affecting mating dynamics, and some fitness-promoting female behaviours that occur at oviposition sites [the use of oviposition marking pheromones (OMPs) and female–female fights for single oviposition sites]. We outline future perspectives and potential contributions of knowledge about sexual communication to Integrated Pest Management programs for tephritid pests. Sexually selected traits are frequently good indicators of male fitness and knowledge of sexual selection processes may contribute to the improvement of the sterile insect technique (SIT), to select genotypes with high reproductive success and to promote sexually selected phenotypes through mass-rearing optimization. Furthermore, males’ exposure to parapheromones, such as phenyl propanoids (PPs), ginger root oil and trimedlure can enhance the mating success of sterile flies used in SIT programs. PPs are also a powerful tool to improve reduced-risk monitoring dispensers and the male annihilation technique, with low side effects on non-target insects. Lastly, we outline the possibility to sensitise or train mass-reared parasitoids on OMPs during the pre-release phase, in order to improve their post-release performance in the field.

  • regional suppression of Bactrocera fruit flies diptera tephritidae in the pacific through biological control and prospects for future introductions into other areas of the world
    Insects, 2012
    Co-Authors: Roger I. Vargas, Luc Leblanc, Ernest J Harris, Nicholas C Manoukis
    Abstract:

    Bactrocera fruit fly species are economically important throughout the Pacific. The USDA, ARS U.S. Pacific Basin Agricultural Research Center has been a world leader in promoting biological control of Bactrocera spp. that includes classical, augmentative, conservation and IPM approaches. In Hawaii, establishment of Bactrocera cucurbitae (Coquillett) in 1895 resulted in the introduction of the most successful parasitoid, Psyttalia fletcheri (Silvestri); similarly, establishment of Bactrocera dorsalis (Hendel) in 1945 resulted in the introduction of 32 natural enemies of which Fopius arisanus (Sonan), Diachasmimorpha longicaudata (Ashmead) and Fopius vandenboschi (Fullaway) were most successful. Hawaii has also been a source of parasitoids for fruit fly control throughout the Pacific region including Australia, Pacific Island Nations, Central and South America, not only for Bactrocera spp. but also for Ceratitis and Anastrepha spp. Most recently, in 2002, F. arisanus was introduced into French Polynesia where B. dorsalis had invaded in 1996. Establishment of D. longicaudata into the new world has been important to augmentative biological control releases against Anastrepha spp. With the rapid expansion of airline travel and global trade there has been an alarming spread of Bactrocera spp. into new areas of the world (i.e., South America and Africa). Results of studies in Hawaii and French Polynesia, support parasitoid introductions into South America and Africa, where B. carambolae and B. invadens, respectively, have become established. In addition, P. fletcheri is a candidate for biological control of B. cucurbitae in Africa. We review past and more recent successes against Bactrocera spp. and related tephritids, and outline simple rearing and release methods to facilitate this goal.

  • population dynamics of three Bactrocera spp fruit flies diptera tephritidae and two introduced natural enemies fopius arisanus sonan and diachasmimorpha longicaudata ashmead hymenoptera braconidae after an invasion by Bactrocera dorsalis hendel in tahiti
    Biological Control, 2012
    Co-Authors: Roger I. Vargas, Luc Leblanc, Rudolph Putoa, Jaime C Pinero
    Abstract:

    Abstract Oriental fruit fly, Bactrocera dorsalis (Hendel), invaded French Polynesia in 1996. In 2002 a natural enemy, Fopius arisanus (Sonan), was released and established. By 2009 mean (±SD) F. arisanus parasitism for fruit flies infesting Psidium guajava (common guava), Inocarpus fagifer (Polynesian chestnut) and Terminalia catappa (tropical almond) fruits on Tahiti Island was 64.8 ± 2.0%. A second parasitoid, Diachasmimorpha longicaudata (Ashmead), was released and established in 2008. Although widespread, parasitism rates have not been higher than 10%. From 2003 (parasitoid establishment) to 2009 (present survey) numbers of B. dorsalis , Bactrocera tryoni (Froggatt), Queensland fruit fly, and Bactrocera kirki (Froggatt) emerging (per kg of fruit) declined. For example, for P. guajava there was a decline of 92.3%, 96.8%, and 99.6%, respectively. Analysis of co-infestation patterns (1998–2009) of B. dorsalis , B. tryoni , and B. kirki , suggest B. dorsalis is now the most abundant species in many common host fruits. Establishment of F. arisanus is the most successful example of classical biological control of fruit flies in the Pacific outside of Hawaii and can be introduced if B. dorsalis spreads to other French Polynesian islands, as was the recent case when B. dorsalis spread to the Marquesas Islands. These studies support F. arisanus as a prime biological control candidate for introduction into South America and Africa where Bactrocera carambolae Drew and Hancock and Bactrocera invadens Drew, Tsuruta, and White, respectively, have become established.

  • evaluation of splat with spinosad and methyl eugenol or cue lure for attract and kill of oriental and melon fruit flies diptera tephritidae in hawaii
    Journal of Economic Entomology, 2008
    Co-Authors: Roger I. Vargas, John D Stark, Mark Hertlein, Agenor Mafra Neto, Reginald R Coler, Jaime C Pinero
    Abstract:

    Abstract Specialized Pheromone and Lure Application Technology (SPLAT) methyl eugenol (ME) and cue-lure (C-L) “attract-and-kill” sprayable formulations containing spinosad were compared with other formulations under Hawaiian weather conditions against oriental fruit fly, Bactrocera dorsalis (Hendel), and melon fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae), respectively. Field tests were conducted with three different dispensers (Min-U-Gel, Acti-Gel, and SPLAT) and two different insecticides (naled and spinosad). SPLAT ME with spinosad was equal in performance to the standard Min-U-Gel ME with naled formulation up to 12 wk. SPLAT C-L with spinosad was equal in performance to the standard Min-U-Gel C-L with naled formulation during weeks 7 to12, but not during weeks 1–6. In subsequent comparative trials, SPLAT ME + spinosad compared favorably with the current standard of Min-U-Gel ME + naled for up to 6 wk, and it was superior from weeks 7 to 12 in two separate tests conducted in a papaya (...

Wang Bo - One of the best experts on this subject based on the ideXlab platform.

  • synonymization of key pest species within the Bactrocera dorsalis species complex diptera tephritidae taxonomic changes based on a review of 20 years of integrative morphological molecular cytogenetic behavioural and chemoecological data
    Systematic Entomology, 2015
    Co-Authors: Mark K Schutze, Karen F Armstrong, Norman B Barr, Nidchaya Aketarawong, Weerawan Amornsak, Antonis A Augustinos, Wang Bo
    Abstract:

    Bactrocera papayae Drew & Hancock, Bactrocera philippinensis Drew & Hancock, Bactrocera carambolae Drew & Hancock, and Bactrocera invadens Drew, Tsuruta & White are four horticultural pest tephritid fruit fly species that are highly similar, morphologically and genetically, to the destructive pest, the Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). This similarity has rendered the discovery of reliable diagnostic characters problematic, which, in view of the economic importance of these taxa and the international trade implications, has resulted in ongoing difficulties for many areas of plant protection and food security. Consequently, a major international collaborative and integrated multidisciplinary research effort was initiated in 2009 to build upon existing literature with the specific aim of resolving biological species limits among B. papayae, B. philippinensis, B. carambolae, B. invadens and B. dorsalis to overcome constraints to pest management and international trade. Bactrocera philippinensis has recently been synonymized with B. papayae as a result of this initiative and this review corroborates that finding; however, the other names remain in use. While consistent characters have been found to reliably distinguish B. carambolae from B. dorsalis, B. invadens and B. papayae, no such characters have been found to differentiate the latter three putative species. We conclude that B. carambolae is a valid species and that the remaining taxa, B. dorsalis, B. invadens and B. papayae, represent the same species. Thus, we consider B. dorsalis (Hendel) as the senior synonym of B. papayae Drew and Hancock syn.n. and B. invadens Drew, Tsuruta & White syn.n. A redescription of B. dorsalis is provided. Given the agricultural importance of B. dorsalis, this taxonomic decision will have significant global plant biosecurity implications, affecting pest management, quarantine, international trade, postharvest treatment and basic research. Throughout the paper, we emphasize the value of independent and multidisciplinary tools in delimiting species, particularly in complicated cases involving morphologically cryptic taxa.

Luc Leblanc - One of the best experts on this subject based on the ideXlab platform.

  • Descriptions of four new species of Bactrocera and new country records highlight the high biodiversity of fruit flies in Vietnam (Diptera, Tephritidae, Dacinae)
    Pensoft Publishers, 2018
    Co-Authors: Luc Leblanc, Michael San Jose, Camiel Doorenweerd, Hong Thai Pham, Daniel Rubinoff
    Abstract:

    Recent snap-shot surveys for fruit flies in Vietnam in 2015 and 2017 using traps baited with the male Dacinae fruit fly lures methyl eugenol, cue-lure and zingerone, collected 56 species, including 11 new country records and another 11 undescribed species, four of which are described in this paper. This increases the number of described species known to occur in Vietnam from 78 to 93. Species accumulation curves, based on the Chao 2 mean estimate, suggest that we collected 60–85 % of the local fauna at the sites sampled, and that species diversity decreases with increasing latitude. The four new species are named: Bactrocera (Tetradacus) ernesti Leblanc & Doorenweerd sp. n., B. (Asiadacus) connecta Leblanc & Doorenweerd sp. n., B. (Parazeugodacus) clarifemur Leblanc & Doorenweerd sp. n., and B. (Bactrocera) adamantea Leblanc & Doorenweerd sp. n. In addition to morphological data COI DNA sequence data of both the COI-5P and COI-3P mitochondrial DNA gene regions is provided. Three of the four newly described species are morphologically and genetically easily distinguished from all other members of Dacini. Bactrocera clarifemur sp. n. is superficially similar to B. pendleburyi (Perkins) based on morphology, but there are several apomorphic characters to distinguish the two. Both COI and a segment of the nuclear gene Elongation Factor 1 alpha separate the two species as well

  • a phylogenetic assessment of the polyphyletic nature and intraspecific color polymorphism in the Bactrocera dorsalis complex diptera tephritidae
    ZooKeys, 2015
    Co-Authors: Luc Leblanc, Michael San Jose, Norman B Barr, Daniel Rubinoff
    Abstract:

    The Bactrocera dorsalis complex (Tephritidae) comprises 85 species of fruit flies, including five highly destructive polyphagous fruit pests. Despite significant work on a few key pest species within the complex, little has been published on the majority of non-economic species in the complex, other than basic descriptions and illustrations of single specimens regarded as typical representatives. To elucidate the species relationships within the Bactrocera dorsalis complex, we used 159 sequences from one mitochondrial (COI) and two nuclear (elongation factor-1α and period) genes to construct a phylogeny containing 20 described species from within the complex, four additional species that may be new to science, and 26 other species from Bactrocera and its sister genus Dacus. The resulting concatenated phylogeny revealed that most of the species placed in the complex appear to be unrelated, emerging across numerous clades. This suggests that they were placed in the Bactrocera dorsalis complex based on the similarity of convergent characters, which does not appear to be diagnostic. Variations in scutum and abdomen color patterns within each of the non-economic species are presented and demonstrate that distantly-related, cryptic species overlap greatly in traditional morphological color patterns used to separate them in keys. Some of these species may not be distinguishable with confidence by means other than DNA data.

  • an evaluation of the species status of Bactrocera invadens and the systematics of the Bactrocera dorsalis diptera tephritidae complex
    Annals of The Entomological Society of America, 2013
    Co-Authors: Michael San Jose, Luc Leblanc, Scott M Geib, Daniel Rubinoff
    Abstract:

    ABSTRACT The genus Bactrocera (Tephritidae) contains >500 species, including many severe pests of fruits and vegetables. Although native to tropical and subtropical areas of Africa, India, Southeast Asia, and Australasia, a number of the pest species, largely members of the Bactrocera dorsalis (Hendel) complex, have become widespread through accidental introduction associated with agricultural trade. The B. dorsalis complex includes several morphologically and ecologically similar pests, making species designations uncertain. One of these, Bactrocera invadens Drew, Tsuruta, and White, endemic to Sri Lanka, has spread across Africa in the last decade and become a major agricultural pest. We sequenced one mitochondrial and two nuclear genes from 73 specimens, belonging to 19 species to construct phylogenies and examine species relationships and limits within the genus Bactrocera and several species of the B. dorsalis complex-specifically addressing the placement of B. invadens. Results indicate the B. dorsa...

  • regional suppression of Bactrocera fruit flies diptera tephritidae in the pacific through biological control and prospects for future introductions into other areas of the world
    Insects, 2012
    Co-Authors: Roger I. Vargas, Luc Leblanc, Ernest J Harris, Nicholas C Manoukis
    Abstract:

    Bactrocera fruit fly species are economically important throughout the Pacific. The USDA, ARS U.S. Pacific Basin Agricultural Research Center has been a world leader in promoting biological control of Bactrocera spp. that includes classical, augmentative, conservation and IPM approaches. In Hawaii, establishment of Bactrocera cucurbitae (Coquillett) in 1895 resulted in the introduction of the most successful parasitoid, Psyttalia fletcheri (Silvestri); similarly, establishment of Bactrocera dorsalis (Hendel) in 1945 resulted in the introduction of 32 natural enemies of which Fopius arisanus (Sonan), Diachasmimorpha longicaudata (Ashmead) and Fopius vandenboschi (Fullaway) were most successful. Hawaii has also been a source of parasitoids for fruit fly control throughout the Pacific region including Australia, Pacific Island Nations, Central and South America, not only for Bactrocera spp. but also for Ceratitis and Anastrepha spp. Most recently, in 2002, F. arisanus was introduced into French Polynesia where B. dorsalis had invaded in 1996. Establishment of D. longicaudata into the new world has been important to augmentative biological control releases against Anastrepha spp. With the rapid expansion of airline travel and global trade there has been an alarming spread of Bactrocera spp. into new areas of the world (i.e., South America and Africa). Results of studies in Hawaii and French Polynesia, support parasitoid introductions into South America and Africa, where B. carambolae and B. invadens, respectively, have become established. In addition, P. fletcheri is a candidate for biological control of B. cucurbitae in Africa. We review past and more recent successes against Bactrocera spp. and related tephritids, and outline simple rearing and release methods to facilitate this goal.

  • population dynamics of three Bactrocera spp fruit flies diptera tephritidae and two introduced natural enemies fopius arisanus sonan and diachasmimorpha longicaudata ashmead hymenoptera braconidae after an invasion by Bactrocera dorsalis hendel in tahiti
    Biological Control, 2012
    Co-Authors: Roger I. Vargas, Luc Leblanc, Rudolph Putoa, Jaime C Pinero
    Abstract:

    Abstract Oriental fruit fly, Bactrocera dorsalis (Hendel), invaded French Polynesia in 1996. In 2002 a natural enemy, Fopius arisanus (Sonan), was released and established. By 2009 mean (±SD) F. arisanus parasitism for fruit flies infesting Psidium guajava (common guava), Inocarpus fagifer (Polynesian chestnut) and Terminalia catappa (tropical almond) fruits on Tahiti Island was 64.8 ± 2.0%. A second parasitoid, Diachasmimorpha longicaudata (Ashmead), was released and established in 2008. Although widespread, parasitism rates have not been higher than 10%. From 2003 (parasitoid establishment) to 2009 (present survey) numbers of B. dorsalis , Bactrocera tryoni (Froggatt), Queensland fruit fly, and Bactrocera kirki (Froggatt) emerging (per kg of fruit) declined. For example, for P. guajava there was a decline of 92.3%, 96.8%, and 99.6%, respectively. Analysis of co-infestation patterns (1998–2009) of B. dorsalis , B. tryoni , and B. kirki , suggest B. dorsalis is now the most abundant species in many common host fruits. Establishment of F. arisanus is the most successful example of classical biological control of fruit flies in the Pacific outside of Hawaii and can be introduced if B. dorsalis spreads to other French Polynesian islands, as was the recent case when B. dorsalis spread to the Marquesas Islands. These studies support F. arisanus as a prime biological control candidate for introduction into South America and Africa where Bactrocera carambolae Drew and Hancock and Bactrocera invadens Drew, Tsuruta, and White, respectively, have become established.