Botryllus - Explore the Science & Experts | ideXlab

Scan Science and Technology

Contact Leading Edge Experts & Companies

Botryllus

The Experts below are selected from a list of 297 Experts worldwide ranked by ideXlab platform

Baruch Rinkevich – 1st expert on this subject based on the ideXlab platform

  • Epithelial cell cultures from Botryllus schlosseri palleal buds: accomplishments and challenges.
    Methods in cell science : an official journal of the Society for In Vitro Biology, 2020
    Co-Authors: Claudette Rabinowitz, Baruch Rinkevich

    Abstract:

    This study focuses on recent improvement in epithelial monolayer cultures originating from whole extirpated Botryllus schlosseri (Urochordata) buds. Buds (n = 2,000) were taken at different (‘A’ to ‘D’) blastogenic stages. We tested the suitability of 35 combinations of various substrates and media on attachment, cell spread, epithelial growth frequencies and on monolayer lifespans. Under favorable conditions, cultured buds at blastogenic stages ‘B’ to ‘D’ (but not stage ‘A’) started to attach to the substrates following a 3-day transient period that leads to formation of spheres and attached monolayers. Substrate type is important for the attachment and the development of monolayers. Under various culture conditions, some of stages ‘B’ and ‘C’ buds develop (3-20 days) one or more large (1 mm diameter) spheres. Stage ‘D’ buds develop monolayers (up to 20% of buds) without going through a sphere phase. Neither spheres nor attached monolayers of epithelium were observed in stage ‘A’ bud cultures. Spheres grew at a rate of 60 microm in diameter per day using specific medium types and did not attach unless the appropriate substrate was present. When attached, epithelial monolayers expanded at a rate of 200 microm in diameter per day, for 3-15 days, and subsequently detached and died. Sixteen types of media were tested. Medium and substrate combinations were found to determine epithelial lifespan. These results revealed significant improvements in the culture of epithelial monolayers from Botryllus palleal buds. However, an early senescence of the developed epithelial sheets (up to two weeks from onset of appearance) may indicate an internal ageing clock that should be taken into consideration in future approaches.

  • Cell Communication-mediated Nonself-Recognition and -Intolerance in Representative Species of the Animal Kingdom
    Journal of Molecular Evolution, 2020
    Co-Authors: Werner A. Mueller, Baruch Rinkevich

    Abstract:

    Why has histo-incompatibility arisen in evolution and can cause self-intolerance? Compatible/incompatible reactions following natural contacts between genetically-different (allogeneic) colonies of marine organisms have inspired the conception that self–nonself discrimination has developed to reduce invasion threats by migratory foreign germ/somatic stem cells, in extreme cases resulting in conquest of the whole body by a foreign genome. Two prominent model species for allogeneic discrimination are the marine invertebrates Hydractinia (Cnidaria) and Botryllus (Ascidiacea). In Hydractinia , self–nonself recognition is based on polymorphic surface markers encoded by two genes ( alr1, alr2 ), with self recognition enabled by homophilic binding of identical ALR molecules. Variable expression patterns of alr alleles presumably account for the first paradigm of autoaggression in an invertebrate. In Botryllus, self–nonself recognition is controlled by a single polymorphic gene locus ( BHF ) with hundreds of codominantly expressed alleles. Fusion occurs when both partners share at least one BHF allele while rejection develops when no allele is shared. Molecules involved in allorecognition frequently contain immunoglobulin or Ig-like motifs, case-by-case supplemented by additional molecules enabling homophilic interaction, while the mechanisms applied to destroy allogeneic grafts or neighbors include taxon-specific tools besides common facilities of natural immunity. The review encompasses comparison with allorecognition in mammals based on MHC-polymorphism in transplantation and following feto-maternal cell trafficking.

  • UV-B radiation bearings on ephemeral soma in the shallow water tunicate Botryllus schlosseri.
    Ecotoxicology and Environmental Safety, 2020
    Co-Authors: Andy Qarri, Amalia Rosner, Claudette Rabinowitz, Baruch Rinkevich

    Abstract:

    Abstract Sedentary shallow water marine organisms acquire numerous protective mechanisms to mitigate the detrimental effects of UV radiation (UV-R). Here we investigated morphological and gene expression outcomes in colonies of the cosmopolitan ascidian Botryllus schlosseri, up to 15-days post UV-B irradiation. Astogeny in Botryllus is characterized by weekly repeating sets of asexual budding, coinciding with apoptotic elimination of functional zooids (blastogenesis). Ten UV-B doses were administered to three clusters: sublethal, enhanced-mortality, lethal (LD50 = 6.048 kJ/m2) which differed in mortality rates, yet reflected similar distorted morphotypes, and arrested blastogenesis, all intensified in the enhanced-mortality/lethal clusters. Even the sub-lethal doses inflicted expression modifications in 8 stress proteins (HSP 90/70 families and NIMA) as well as morphological blastogenesis. The morphological/gene-expression impacts in surviving colonies lasted for 15 days post irradiation (two blastogenic-cycles), where all damaged and arrested zooids/buds were absorbed, after which the colonies returned to their normal blastogenic-cycles and gene expression profiles, and initiated new buds. The above reflects a novel colonial maintenance strategy associated with the disposable-soma tenet, where the ephemeral soma in Botryllus is eliminated without engaging with the costs of repair, whereas other colonial components, primarily the pool of totipotent stem cells, are sustained under yet unknown colonial-level regulatory cues.

Anthony W De Tomaso – 2nd expert on this subject based on the ideXlab platform

  • the biology of the extracorporeal vasculature of Botryllus schlosseri
    Developmental Biology, 2019
    Co-Authors: Delany Rodriguez, Shane Nourizadeh, Anthony W De Tomaso

    Abstract:

    Abstract The extracorporeal vasculature of the colonial ascidian Botryllus schlosseri plays a key role in several biological processes: transporting blood, angiogenesis, regeneration, self-nonself recognition, and parabiosis. The vasculature also interconnects all individuals in a colony and is composed of a single layer of ectodermally-derived cells. These cells form a tube with the basal lamina facing the lumen, and the apical side facing an extracellular matrix that consists of cellulose and other proteins, known as the tunic. Vascular tissue is transparent and can cover several square centimeters, which is much larger than any single individual within the colony. It forms a network that ramifies and expands to the perimeter of each colony and terminates into oval-shaped protrusions known as ampullae. Botryllus individuals replace themselves through a weekly budding cycle, and vasculature is added to ensure the interconnection of each new individual, thus there is continuous angiogenesis occurring naturally. The vascular tissue itself is highly regenerative; surgical removal of the ampullae and peripheral vasculature triggers regrowth within 24–48 h, which includes forming new ampullae. When two individuals, whether in the wild or in the lab, come into close contact and their ampullae touch, they can either undergo parabiosis through anastomosing vessels, or reject vascular fusion. The vasculature is easily manipulated by direct means such as microinjections, microsurgeries, and pharmacological reagents. Its transparent nature allows for in vivo analysis by bright field and fluorescence microscopy. Here we review the techniques and approaches developed to study the different biological processes that involve the extracorporeal vasculature.

  • temporally and spatially dynamic germ cell niches in Botryllus schlosseri revealed by expression of a tgf beta family ligand and vasa
    Evodevo, 2016
    Co-Authors: Adam D. Langenbacher, Anthony W De Tomaso

    Abstract:

    Germ cells are specified during early development and are responsible for generating gametes in the adult. After germ cells are specified, they typically migrate to a particular niche in the organism where they reside for the remainder of its lifetime. For some model organisms, the specification and migration of germ cells have been extensively studied, but how these events occur in animals that reproduce both sexually and asexually is not well understood. We have identified a novel TGF-β family member in Botryllus schlosseri, tgfβ-f, and found that it is expressed by follicle cell progenitors and the differentiated follicle and support cells surrounding the maturing gametes. Using the expression of tgfβ-f and the germ cell marker vasa, we have found that nearly all germ cells in Botryllus are associated with tgfβ-f-expressing follicle progenitors in clusters consisting solely of those two cell types. These clusters were mostly small, consisting of ten or fewer cells, and generally contained between a 2:1 and 1:1 ratio of follicle progenitors to germ cells. Clusters of germ and follicle progenitor cells were primarily localized to niches in the primary and secondary buds, but could also be found in other locations including the vasculature. We analyzed the location of germ cell clusters throughout the asexual life cycle of Botryllus and found that at the stage when germ cells are first detected in the secondary bud niche, a dramatic change in the size and location of germ/follicle cell clusters also occurred. Our findings suggest that germ/follicle cell clusters have predictable migratory patterns during the weekly asexual developmental cycle in Botryllus. An increased number of small clusters and the presence of clusters in the vasculature coinciding with the appearance of clusters in the secondary bud suggest that fragmentation of clusters and the migration of smaller clusters through the vasculature may be an important aspect of Botryllus reproductive biology, ensuring the transmission of the germline to subsequent asexual generations.

  • Temporally and spatially dynamic germ cell niches in Botryllus schlosseri revealed by expression of a TGF-beta family ligand and vasa
    EvoDevo, 2016
    Co-Authors: Adam D. Langenbacher, Anthony W De Tomaso

    Abstract:

    Background Germ cells are specified during early development and are responsible for generating gametes in the adult. After germ cells are specified, they typically migrate to a particular niche in the organism where they reside for the remainder of its lifetime. For some model organisms, the specification and migration of germ cells have been extensively studied, but how these events occur in animals that reproduce both sexually and asexually is not well understood. Results We have identified a novel TGF-β family member in Botryllus schlosseri , tgfβ – f , and found that it is expressed by follicle cell progenitors and the differentiated follicle and support cells surrounding the maturing gametes. Using the expression of tgfβ – f and the germ cell marker vasa , we have found that nearly all germ cells in Botryllus are associated with tgfβ – f -expressing follicle progenitors in clusters consisting solely of those two cell types. These clusters were mostly small, consisting of ten or fewer cells, and generally contained between a 2:1 and 1:1 ratio of follicle progenitors to germ cells. Clusters of germ and follicle progenitor cells were primarily localized to niches in the primary and secondary buds, but could also be found in other locations including the vasculature. We analyzed the location of germ cell clusters throughout the asexual life cycle of Botryllus and found that at the stage when germ cells are first detected in the secondary bud niche, a dramatic change in the size and location of germ/follicle cell clusters also occurred. Conclusions Our findings suggest that germ/follicle cell clusters have predictable migratory patterns during the weekly asexual developmental cycle in Botryllus . An increased number of small clusters and the presence of clusters in the vasculature coinciding with the appearance of clusters in the secondary bud suggest that fragmentation of clusters and the migration of smaller clusters through the vasculature may be an important aspect of Botryllus reproductive biology, ensuring the transmission of the germline to subsequent asexual generations.

Loriano Ballarin – 3rd expert on this subject based on the ideXlab platform

  • Immunolocation of phenoloxidase in vacuoles of the compound ascidian Botryllus schlosseri morula cells
    Italian Journal of Zoology, 2020
    Co-Authors: Annalisa Frizzo, Loriano Ballarin, Laura Guidolin, Barbara Baldan, Armando Sabbadin

    Abstract:

    Abstract Using a polyclonal antibody raised against purified phenoloxidase from the colonial ascidian Botryllus schlossen, we studied its distribution among haemocytes and its intracellular location. The enzyme is present inside granular amoebocytes and morula cells, thus confirming the close relationship between the two cell types, as suggested by previous histochemical and histoenzymatic analysis. Immunocytochemistry in both light and electron microscopy shows that phenoloxidase is located inside the vacuoles of moru‐la cells, known to be the effectors of the rejection reaction.

  • data on four apoptosis related genes in the colonial tunicate Botryllus schlosseri
    Data in Brief, 2016
    Co-Authors: Nicola Franchi, Lucia Manni, Filippo Schiavon, Francesca Ballin, Loriano Ballarin

    Abstract:

    The data described are related to the article entitled “Recurrent phagocytosis-induced apoptosis in the cyclical generation change of the compound ascidian Botryllus schlosseri” (Franchi et al., 2016) [1]. Four apoptosis-related genes, showing high similarity with mammalian Bax (a member of the Bcl-2 protein family), AIF1 (apoptosis-inducing factor-1), PARP1 (poly ADP ribose polymerase-1) and IAP7 (inhibitor of apoptosis-7) were identified from the analysis of the trascriptome of B. schlosseri. They were named BsBax, BsAIF1, BsPARP1 and BsIAP7. Here, their deduced amino acid sequence were compared with known sequences of orthologous genes from other deuterostome species together with a study of their identity/similarity.

  • looking for putative phenoloxidases of compound ascidians haemocyanin like proteins in polyandrocarpa misakiensis and Botryllus schlosseri
    Developmental and Comparative Immunology, 2012
    Co-Authors: Loriano Ballarin, Filippo Schiavon, Nicola Franchi, Silvio C E Tosatto, Ivan Micetic, Kazuo Kawamura

    Abstract:

    Phenoloxidases (POs) and haemocyanins constitute a family of copper-containing proteins widely distributed among invertebrates. Both of them are able, under appropriate conditions, to convert polyphenols to quinones and induce cytotoxicity through the production of reactive oxygen species, a fundamental event in many immune responses. In ascidians, PO activity has been described and studied in both solitary and colonial species and the enzyme is involved in inflammatory and cytotoxic reactions against foreign cells or molecules, and in the formation of the cytotoxic foci which characterise the nonfusion reaction of botryllids. Expressed genes for two putative POs (CiPO1 and CiPO2) have been recently identified in C. intestinalis.

    In the present study, we determined the cDNA sequences of two haemocyanin-like proteins from two colonial ascidians: Botryllus schlosseri from the Mediterranean Sea and Polyandrocarpa misakiensis from Japan. Multiple sequence alignments evidenced the similarity between the above sequences and crustacean proPOs whereas the analysis of the three-dimensional structure reveals high similarity with arthropod haemocyanins which share common precursors with arthropod proPOs. Botryllus HLP grouped in the same cluster with Ciona POs, whereas Polyandrocarpa HLP clustered with arthropod haemocyanins; all of them share the full conservation of the six histidines at the two copper-binding sites as well as of other motifs, also found in arthropod haemocyanin subunits, involved in the regulation of enzyme activity. In situ hybridisation indicated that the genes are transcribed inside morula cells, a characteristic haemocyte type in ascidians where PO activity is located, at the beginning of their differentiation. These results represent a first attempt to identify candidate molecules responsible of the PO activity in compound ascidians.